Preparation, NMR Spectroscopic, and *ab Initio*/DFT/ GIAO-MP2 Studies of Halomethyl Cations¹

George A. Olah,* Golam Rasul, Ludger Heiliger, and G. K. Surya Prakash*

Contribution from the Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661

Received November 20, 1995[⊗]

Abstract: A series of halomethyl cations was prepared and studied by ¹³C NMR spectroscopy. Their structures and ¹³C NMR chemical shifts were also calculated by ab initio/DFT/GIAO-MP2 methods. The δ^{13} C of trihalomethyl cations CX₃⁺ (X = Cl, Br, I) and dimethylhalocarbenium ions Me₂CX⁺ (X = F, Cl, Br) correlate well with the Pauling electronegativities of the halogen atoms and δ^{11} B of the isostructural and isoelectronic boron halides as well as with the calculated charge of carbon atoms. The CF₃⁺ cation was not observed, but a chemical shift of δ^{13} C 150 is indicated by comparison with other experimentally observed trihalomethyl cations. GIAO-MP2 chemical shift calculations gave δ^{13} C 169.2 for the CF₃⁺ cation.

Introduction

Several years ago in a preliminary communication,² we reported the preparation and ¹³C NMR study of trihalomethyl cations. The trichloro, tribromo, and triiodomethyl cations were prepared by the ionization of their corresponding tetrahalomethanes in SbF₅/SO₂ClF solutions at low temperature as long lived ions (Scheme 1).

Halogen atoms adjacent to a carbocationic center are inductively destabilizing the cations due to their high electronegativity. However, halogen atoms in trihalomethyl cations CX_3^+ can also stabilize the ions by the p-p interaction between the positively charged carbon atom and the nonbonded electrons pairs on the adjacent halogens accounting for the persistence of many alkylhalocarbenium ions under stable ion conditions.³ The order of the charge-stabilizing effect of halogens on the thermodynamic stability of halomethyl cations was found to be Cl > Br > I. This order is in agreement with the relative increase in the size of the halogen atomic orbitals from chlorine to iodine leading to the least efficient overlap between positively charged carbon and iodine.⁴

The chemical reactivity of halomethyl cations in superacid media were studied by several groups. Sommer et al.⁵ reported the increased reactivity of chloromethyl cations in hydride abstraction reactions with hydrocarbons in superacid media. They found that the reactivity decreased in the order $CCl_3^+ >$ $CHCl_2^+ >> CH_2Cl^+$. This was not expected because the stability of chloromethyl cations decreases in the same order since the number of 3p-electron donating chlorine atoms decreases. On these grounds CCl_3^+ should be the least reactive species in the series. In order to explain this unusual behavior, protosolvation⁶ of the chlorine atoms in superacid was suggested. If the halogen atoms of these ions were affected by further protolytic (or Lewis acid) interaction, the electron deficiency of the corresponding carbocationic centers would become more

(4) Olah, G. A.; Mo, Y. K. In *Carbonium Ions*; Olah, G. A., Schleyer,
P. v. R., Eds.; Wiley Interscience: New York, 1976; Vol. V, Chapter 36.
(5) Sommer, J.; Bukala, J. Acc. Chem. Res. 1993, 26, 370.

Scheme 1

$$CX_4 + SbF_5 \xrightarrow{SO_2CIF} CX_3 \xrightarrow{O} SbF_5X$$

Scheme 2

pronounced, which should result in enhanced superelectrophilic reactivity (Scheme 2). Protosolvation should enhance the electrophilic character of carbon in the corresponding halomethyl ion leading to the higher reactivity in the hydride-abstraction. Therefore, as the number of halogen substituents increases, the electrophilicity should also augment. Similarly, the addition of CCl₄ to the HF-SbF₅ superacid system (and related superacids) as shown by Vančik et al.⁷ also greatly enhanced their reactivity in hydride abstraction from hydrocarbons to form carbocations.

In related studies Vol'pin et al.⁸ found that polyhalomethanes in the presence of excess of AlBr₃ or AlCl₃ exhibit the properties of aprotic superacids. For example, CBr₄•2AlBr₃, CHBr₃•-2AlBr₃, CCl₄•2AlBr₃, and CHCl₃•2AlBr₃ systems at 0–20 °C produces superelectrophiles which catalyze cracking, isomerization, and oligomerization of alkanes and cycloalkanes efficiently.

We now report in full our extended studies of halomethyl cations, including theoretical studies allowing a better understanding of their properties and reactivities.

Results and Discussion

The CCl₃⁺ ion was prepared by slow addition of CCl₄ to a solution of excess SbF₅ in SO₂ClF at -78 °C. The ¹³C NMR spectrum of the solution consists of a single sharp peak at δ^{13} C

(8) Vol'pin, M.; Akhrem, I.; Orlinkov, A. New. J. Chem. 1989, 13, 771.

[®] Abstract published in Advance ACS Abstracts, April 1, 1996.

⁽¹⁾ Stable Carbocations, Part 299. For Part 298, see: Olah, G. A.; Buchholz, H. A.; Prakash, G. K. S.; Rasul, G.; Sosnowski, J. J.; Murray, R. K. Jr.; Kusnetsov, M. A.; Liang, S.; de Meijere, A. *Angew. Chem.* In press.

⁽²⁾ Olah, G. A.; Heiliger, L; Prakash, G. K. S. J. Am. Chem. Soc. 1989, 111, 8020.

⁽³⁾ Carbonium Ions; Olah, G. A., Schleyer, P. v. R., Eds.; Wiley Interscience: New York, 1976; Vol. V, pp 2135–2262.

⁽⁶⁾ Olah, G. A. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 767. For a recent study, see: Olah, G. A.; Rasul, G.; Yudin, A. K.; Burrichter, A.; Prakash, G. K. S.; Chistyakov, A. L.; Stankevich, I. V.; Akhrem, I. S.; Gambaryan, N. P.; Vol'pin, M. E. J. Am. Chem. Soc. **1996**, *118*, 1446.

⁽⁷⁾ Vančik, H.; Percac, K.; Sunko, D. E. J. Am. Chem. Soc. 1990, 112, 7418.

(1)
$$CCl_4 + SbF_5 = \frac{SO_2CIF}{-78 \, ^{\circ}C} = CCl_3 = SbF_5Cl$$

(2) $CCl_3SO_2CI + SbF_5 = \frac{SO_2CIF}{-78 \, ^{\circ}C} = CCl_3 = SbF_5Cl + SO_2$

Similarly, when CCl₃COCl is subjected to superacidic ionizing reaction conditions, immediate evolution of carbon monoxide was observed; the ¹³C NMR, recorded at -78 °C, again shows a single peak at δ^{13} C 236.3 consistent with the formation of the CCl₃⁺ ion (reaction 3).

(3)
$$CCl_3COCl + SbF_5 \xrightarrow{SO_2ClF} CCl_3 SbF_5Cl \leftrightarrow CO$$

In order to trap the prospective intermediate trichloroacetyl cation, CCl₃CO⁺, the experiment was repeated at -120 °C. At this temperature, the evolution of CO is sufficiently slowed down to observe a different set of ¹³C NMR signals, at $\delta^{13}C$ 92 and 194.8 (¹*J*_{CF} = 120 Hz), caused by chloride-fluoride exchange at the acyl carbon, resulting in a donor–acceptor complex with a weakened C–F bond (reaction 4).

(4)
$$CCl_3COCl + SbF_5 = \frac{SO_2CIF}{-120^{\circ}C} = CCl_3COF - SbF_4Cl$$

Upon warming this mixture to -78 °C, these resonances disappear and are replaced by a peak of CCl₃⁺ ion at δ^{13} C 236.3. We did not succeed in observing the expected resonance of the CCl₃CO⁺ cation (150–170 ppm) and conclude that the trichloroacetyl cation is not persistent under the used stable ion conditions. Its intermediate formation, however, must be invoked to account for the extrusion of CO and the subsequent appearance of the signal at δ^{13} C 236.3 characteristic of the CCl₃⁺ ion (reaction 5).

(5)
$$\operatorname{CCl}_3\operatorname{COF} \xrightarrow{\bullet} \operatorname{SbF}_5 \xrightarrow{\operatorname{SO}_2\operatorname{CIF}} \operatorname{CCl}_3^{\textcircled{O}} \operatorname{SbF}_6^{\textcircled{O}} + \operatorname{CO}$$

We also attempted to prepare the dichloromethyl cation by reacting chloroform SbF₅ in SO₂ClF at -78 °C (reaction 6). Chloroform does not give, however, a stable observable dichloromethyl cation, HCCl₂⁺, but rather undergoes fast and complete fluorine-chlorine exchange since no other product other than trifluoromethane could be detected (reaction 6). This is, indeed, the equivalent of Swarts fluorination reaction. However, Vančik et al. were successful⁷ in generating dichloromethyl cation in the solid SbF₅ matrix at -123 °C and was characterized by IR spectroscopy.

(6)
$$\operatorname{HCCl}_{3} + \operatorname{SbF}_{5} \xrightarrow{\operatorname{SO}_{2}\operatorname{ClF}} \left[\bigoplus_{\operatorname{HCCl}_{2}} \bigoplus_{\operatorname{SbF}_{5}\operatorname{Cl}} \xrightarrow{\operatorname{fast}} \operatorname{HCF}_{3} + \operatorname{SbF}_{5-n}\operatorname{Cl}_{n} \right]$$

Likewise, no persistent methyl (CH₃⁺) or chloromethyl cations (H₂CCl⁺), respectively, can be generated from methyl chloride or dichloromethane. Olah et al., however, reported⁹ the preparation of bis(chloromethyl)chloronium ion ClCH₂Cl⁺CH₂-Cl by dissolving dichloromethane in a two-fold molar excess of SbF₅ in SO₂ClF at -130 °C. Consequently, the intrinsic stability of CCl₃⁺ must stem from the ability of three chlorine atoms to symmetrically delocalize the positive charge from the cationic center (whereas the delocalization over two chlorine substituents seems not to be sufficient to observe the respective cation under long lived stable ion condition) (Scheme 3). This is in accord with the remarkably shielded cationic δ^{13} C 236.3 for CCl₃⁺, compared to that in *tert*-butyl cation, δ^{13} C 336.

Scheme 3

 Table 1.
 Relative Stabilization Energies (SE) of Substituted Methyl Cations

ion	SE relative to CH ₃ ⁺ (kcal/mol)
CH ₃ OCH ₂ ⁺	66
$(CH_3O)_2CH^+$	85
$(CH_3O)_3C^+$	90
FCH_2^+	27
F_2CH^+	26
F_3C^+	14

When benzene is added to the superacid solution of CCl_3^+ a mixture of two carbenium ions is obtained, identified as triphenylmethyl and chlorodiphenylmethyl cations by ¹³C NMR spectroscopy, indicating the Friedel–Crafts type reaction sequence 7 of CCl_3^+ .

(7)

$$\begin{array}{c} \bigoplus \\ CCl_{3} + Ph \cdot H \xrightarrow{-H^{\bigoplus}} PhCCl_{3} & \underline{xs \ SbF_{5}} & \bigoplus \\ PhCCl_{2} \xrightarrow{PhH} & Ph_{2}CCl_{2} \\ & \underbrace{SbF_{5} \longrightarrow } & CPh_{3} \end{array}$$

After the successful preparation and characterization of the trichloromethyl cation ion we attempted to obtain the trifluoromethyl cation, CF_3^+ . When CF_3SO_2Cl was treated with SbF_5 in SO_2ClF at -78 °C, only evolution of CF_4 gas was observed, and no carbocationic resonance in the ¹³C NMR spectrum could be detected (reaction 8).

(8)
$$CF_3SO_2Cl + SbF_5 \xrightarrow{SO_2ClF} [CF_3 SbF_6] + SO_2 \longrightarrow CF_4 + SbF_5$$

Similarly, the attempted ionization of CF_4 with SbF_5 neither at -78 °C in SO₂ClF nor in neat SbF_5 even at room temperature resulted in any reaction 9.

(9)
$$CF_4 + SbF_5 = \frac{SO_2CIF}{-78^{\circ}C}$$
 no reaction
or RT

Likewise, reaction of CF₃COOH with HSO₃F/ SbF₅ (1:1) (Magic Acid) only gave the protonated acid with no subsequent dehydration and decarbonylation at -78 °C or even at room temperature as evidenced by ¹³C NMR (reaction 10).

(10)
$$CF_3COOH + HSO_3F/SbF_5 \xrightarrow{SO_2CIF} CF_3 - C_5 \xrightarrow{OH} + SbF_5/SO_3F$$

or RT OH

In our studies no CF_3^+ was detected under any superacidic reaction conditions. In the gas phase, however, CF_3^+ is readily observed as a high abundance fragment ion in the mass spectra of many organofluorine compounds.¹⁰ Stabilization energies were calculated based on gas phase experiments¹¹ for methoxymethyl and fluoromethyl cations relative to CH_3^+ which showed that CF_3^+ is favored over CH_3^+ by 14 kcal/ mol (Table 1).

The order of stability of the fluoromethyl cations decreases with the increase in the substitution of fluorine for hydrogen. However, the trend in solution could be different when compared to the gas phase analogues (due to solvent effects, ion pairing, etc.). Thus, the existence of the well characterized¹² $CH_3CF_2^+$ versus the elusive long lived $CH_3CH_2^+$ cation in the

⁽⁹⁾ Olah, G. A.; Bruce, M. R. J. Am. Chem. Soc. 1979, 101, 4765.

⁽¹⁰⁾ Mohler, F. L.; Bloom, E. R.; Lengel, J. H.; Wise, L. G. J. Am. Chem. Soc. 1949, 71, 337.

⁽¹¹⁾ Martin, R. H.; Lange, F. W.; Taft, P. W. J. Am. Chem. Soc. 1966, 88, 1353.

⁽¹²⁾ Olah, G. A.; Mo, Y. K. J. Org. Chem. 1972, 37, 1029.

Table 2. Comparison of δ^{13} C of Trihalomethyl Cations and Related Haloforms

X	HCX ₃	CX_3^+	$\Delta \delta^{13}$ C
Cl	77.7	236.3	158.6
Br	12.3^{a}	207	194.7
Ι	-139.7^{a}	95	234.7

^a Reference 13.

condensed phase suggests that the replacement of hydrogen atoms by fluorine atoms provides stabilization for the carbocations. The reason for the elusiveness of the CF_3^+ cation in solution is probably due to kinetic reasons wherein it is easily quenched with F^- ion to produce stable CF_4 .

In contrast to CF_3^+ , CBr_3^+ and CI_3^+ were obtained as persistent, stable ions when CBr_4 and CI_4 were reacted with excess SbF_5 in SO₂CIF and the ¹³C NMR spectra of the resulting ions were obtained (reactions 11 and 12).

(11)
$$\operatorname{CBr}_4 + \operatorname{SbF}_5 \xrightarrow{\operatorname{SO}_2\operatorname{CIF}}_{-78^{\circ}\operatorname{C}} \xrightarrow{\operatorname{O}}_{\operatorname{CI}} + \xrightarrow{\operatorname{SbF}_5\operatorname{Br}} \xrightarrow{\operatorname{O}}_{-78^{\circ}\operatorname{C}}$$

(12) $\operatorname{CI}_4 + \operatorname{SbF}_5 \xrightarrow{\operatorname{SO}_2\operatorname{CIF}}_{-78^{\circ}\operatorname{C}} \xrightarrow{\operatorname{O}}_{\operatorname{CI}_3} + \xrightarrow{\operatorname{O}}_{\operatorname{SbF}_5\operatorname{I}}$

The ¹³C NMR spectra showed only single peaks at δ^{13} C 207 and 95, respectively, consistent with the formation of tribromomethyl and triiodomethyl cation. The δ^{13} C 95 of CI₃⁺ represents the most shielded carbon chemical shift observed for a trivalent carbenium center under stable ion conditions. Bromine and iodine are known (based on their electronegativity) to have a less pronounced inductive electron withdrawing effect on adjacent sp² carbon atoms than chlorine, but their ability to backdonate electron density into adjacent carbocationic centers is much diminished due to smaller degree of 2p-4p and 2p-5p overlap. Comparison of the differences in δ^{13} C between CCl₃⁺, CBr₃⁺, and CI₃⁺ relative to the related haloforms HCCl₃, HCBr₃, and HCI₃ reflects this trend (Table 2).

The chemical shift values are consistent with the decreasing order of backdonation Cl > Br > I. A plot of $\Delta \delta^{13}$ C versus the Pauling electronegativity¹⁴ of the respective halogens in CX_3^+ results in a straight line. If this plot is extended to the electronegativity value of fluorine, the projected δ^{13} C for the CF_3^+ cation would be $\delta^{13}C$ 150.7 ($\Delta\delta^{13}C = 37.2$ ppm). This implies that ¹³C shielding of fluorine correlates to its electronegativity similarly as it does for chlorine, bromine, and iodine. The validity of this hypothesis can be tested by plotting $\Delta \delta^{13}$ C of the previously obtained³ dimethylhalocarbenium ions, Me₂- CX^+ (X = Br, Cl, F), against the electronegativity of X. Figure 1 shows both plots for CX_3^+ and Me_2CX^+ . The good correlation for Me_2CX^+ cations confirms the validity of the suggestion. The slopes of the plots are -150.7 and -78.4 ppm/unit EN indicating diminished backbonding per halogen ligand upon increasing halogen substitution. In Table 3 we have listed δ^{13} C of chloromethylcarbenium ions and their hydrogenated precursors.

To complete the study of the synergetic effect of stepwise halogen substitution in methyl cations, δ^{13} C of dichloromethyl methyl cation was obtained to enable comparison with chlorodimethyl- and trichlorocarbenium ion (Table 3 and Figure 2).

Another approach of examining the validity of the electronegativity-shielding correlation in carbenium ions is provided by comparison of the calculated ¹³C chemical shifts with the ¹¹B shifts of the analogous isoelectronic and isostructural boron compounds. Plotting the δ^{11} B of Me_nBX_{3-n} (X = F, Cl, Br, I)

Figure 1. Correlation of $\Delta \delta^{13}$ C of halocarbenium ions with Pauling electronegativity.

Table 3. Comparison of $\delta^{13}C$ of Chloromethylcarbenium Ions and Their Hydrido Analogues

$\begin{array}{ccccccc} \delta^{13}\mathrm{C} & 313.8^{a} & 276.0 & 236.3 \\ \delta^{13}\mathrm{C} \ \mathrm{HCMe}_{x}\mathrm{Cl}_{3-x} & 54.9^{a} & 69.2^{b} & 77.7 \\ \delta^{3}\mathrm{C} & 258.9 & 206.8 & 158.6 \end{array}$		Me ₂ CCl ⁺	MeCCl_{2}^{+}	CCl_3^+
Δ0 C 238.9 200.8 138.0	$\delta^{13}C$	313.8 ^a	276.0	236.3
	$\delta^{13}C$ HCMe _x Cl _{3-x}	54.9 ^a	69.2^{b}	77.7
	$\Delta\delta^{13}C$	258.9	206.8	158.6

^a Reference 3. ^b Reference 15.

Figure 2. Correlation between δ^{13} C and δ^{11} B of halomethylcarbenium ions and methylboron halides. δ^{13} C 282.9 of Me₂CF⁺, δ^{13} C 313.8 of Me₂CCl⁺, and δ^{13} C 319.8 of Me₂CBr⁺ of C⁺ of the ions were taken from ref 3.

versus the δ^{13} C of the experimentally determined Me_nCX_{3-n}⁺ yields a good linear relationship (Figure 2).

 δ^{13} C for CF₃⁺ previously calculated from the electronegativity-shielding correlation (Figure 1) conform with the experimentally determined δ^{11} B vs δ^{13} C⁺ correlation line as seen in Figure 2, thus reinforcing the validity of such comparisons.

To study the charge distributions and its effect on ¹³C chemical chifts we have carried out¹⁶ *ab initio* and density functional theory (DFT)¹⁷ calculations on trihalomethyl cations at the MP2/LANL2DZ¹⁸ and B3LYP¹⁹ /LANL2DZ levels (as well as MP2/6-31G* and B3LYP/6-31G* for fluoro and chloro

⁽¹³⁾ Levy, G. C.; Lichter, R. L.; Nelson, G. L. Carbon-13 NMR Spectroscopy; Wiley Interscience: New York, 1980.

⁽¹⁴⁾ Pauling, L. *The Nature of the Chemical Bond*; Cornell University Press: Ithaka, 1939; p 58.

⁽¹⁵⁾ Stothers, J. B. C-13 NMR Spectroscopy; Academic Press: New York, 1972.

Table 4. Atomic Charges and Bond Lengths of Trihalomethyl Cations

	atomic charges		bond length	
ion	MP2/LANL2DZ (MP2/6-31G*)	B3LYP/LANL2DZ (B3LYP/6-31G*)	MP2/LANL2DZ (MP2/6-31G*)	B3LYP/LANL2DZ (B3LYP/6-31G*)
CF ₃ ⁺	C +1.12 (+1.30) F -0.04 (-0.10)	+0.77 (+0.97) +0.07 (+0.01)	C-F 1.297 (1.246)	1.286 (1.244)
CCl_3^+	C -0.02 (-0.17) Cl +0.34 (+0.39)	-0.17(-0.25) +0.39(+0.42)	C-Cl 1.722 (1.648)	1.713 (1.663)
CBr ₃ ⁺	C -0.29 Br +0.43	-0.32 +0.44	C-Br 1.885	1.879
CI_3^+	C -0.85 I +0.62	-0.81 + 0.60	C-I 2.067	2.065

Figure 3. Plot of B3LYP/LANL2DZ atomic charges vs δ^{13} C of carbon atoms of trihalomethyl cations.

compounds), respectively. All four trihalomethyl cations were optimized and the optimized bond lengths and Mulliken atomic charges are listed in Table 4.

At MP2/6-31G* level CF_3^+ was found to have a C-F bond length of 1.246 Å which is 0.084 Å shorter (Table 4) than the C-F bond in CF₄. This shortening is a result of efficient 2p-2p overlap between the nonbonded electron pairs on the fluorine atoms and adjacent positively charged carbon. The C-Cl bond length of 1.648 Å in CCl₃⁺ is also significantly shorter compared to the C-Cl bond in CCl₄ (1.766 Å) indicating the positive charge in CCl₃⁺ being delocalized among three chlorine atoms. Similar results are also found for CBr₃⁺ and Cl₃⁺ ions (Table 4).

The B3LYP/LANL2DZ calculated Mulliken charge densities (Table 4) of carbon atom of trihalomethyl cations were plotted against the experimental δ^{13} C (Figure 3). Observed good linear correlation (which may be fortuitous) indicates that for stable carbocations ¹³C chemical shifts can be directly correlated with the resident positive charge density on the cationic centers. However, the calculated charge density of carbon atom of the CF₃⁺ ion does not closely reflects the predicted δ^{13} C.

(17) Ziegler, T. Chem. Rev., 1991, 91, 651.

(18) D95 on first row: Dunning, T. H., Jr.; Hay, P. J. In *Modern Theoretical Chemistry*; Shaefer, H. F., Ed.; Plenum: New York, 1976; pp 1–28. Los Alamos ECP plus DZ: on Na–Li: Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* **1985**, *82*, 270.

We have also calculated the δ^{13} C of CF₃⁺ and CCl₃⁺ ions at the correlated level of GIAO (Gauge Including Atomic Orbitals)-MP2²⁰ method using tzp²⁰ basis set on MP2/6-31G* and B3LYP/6-31G* geometries. At the GIAO-MP2/tzp//MP2/6-31G* level the calculated δ^{13} C of CF₃⁺ is 169.2 (δ^{13} C 167.9 at the GIAO-MP2/tzp//B3LYP/6-31G* level) and is close to the predicted value of 150.0 obtained from comparison with other known trihalomethyl carbocations. The calculated δ^{13} C of CCl₃⁺ is 249.9 (δ^{13} C 255.2 at the GIAO-MP2/tzp//B3LYP/6-31G* level) compared with the experimental value of 236.0. At this time reliable ¹³C NMR chemical shift calculations of CBr₃⁺ and CI₃⁺ ions at the GIAO-MP2 method are not possible.

Conclusions

Halomethyl cations were prepared under stable ion conditions and studied by ¹³C NMR spectroscopy. The structures and ¹³C NMR chemical shifts were also probed by *ab initio*/DFT/GIAO-MP2 methods. The ¹³C NMR chemical shifts of these cations are consistent with the decreasing order of backdonation Cl > Br > I. Furthermore, the ¹³C NMR chemical shifts of these ions correlate well with the Pauling electronegativities of the halogen atoms, the ¹¹B NMR chemical shifts of the isostructural and isoelectronic boron halides, and also with the Mulliken charges of the carbon atoms. By comparison with the chemical shifts of other observed trihalomethyl cations δ^{13} C of 150 was predicted for CF₃⁺ cation, whereas the GIAO-MP2 calculated value is 169.2.

Experimental Part

NMR Spectroscopy. ¹³C spectra were recorded on either a Varian Associates Model FT 80 (external lock) or Varian Associates Model VXR 200 (data system VXR 4000) NMR spectrometer equipped with a 10 and 5 mm broadband variable temperature probe, respectively. All ¹H and ¹⁹F spectra were obtained on the latter, operating within an internal lock provided by an acetone- d_6 capillary. ¹H and ¹³C resonances were referenced to external (capillary) tetramethylsilane, ¹⁹F signals to external CFCl₃ at $\delta = 0.00$ ppm, respectively.

Chemicals. MeCCl₃, CCl₄, CCl₃COCl, CCl₃SO₂Cl, CF₄, CF₃SO₂-Cl, CF₃COOH, and CBr₄, were commercially available (Aldrich, PCR) and used as received.

Preparation of Halocarbenium Ions. Freshly distilled SbF₅ was dissolved in approximately twice the volume of SO₂ClF. To 1 mL of the solution in a test tube maintained at -78 °C (dry ice acetone bath) was slowly added, with vigorous stirring (vortex machine) and intermittent cooling, a precooled (-78 °C) solution of the precursor CX₄ (X = Cl, Br, I) in equal volume SO₂ClF (total volume 0.3 mL). This solution (0.5 mL) was transferred into a 5 mm NMR tube under argon and kept at -78 °C. A cooled capillary tube (diameter 1.7 mm) containing the lock solvent acetone- d_6 was inserted fitted with Teflon spacers, and the NMR tube was transferred to the precooled variable temperature broadband probe (-60 °C) of the NMR spectrometer for spectroscopic studies. A sufficient signal to noise ratio was generally obtained after 500 transients for ¹³C and 10 transients for ¹⁹F spectra.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

JA9538905

⁽¹⁶⁾ Using Gaussian 94 program (Revision A.1); Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.

⁽¹⁹⁾ Becke's Three Parameter Hybrid Method Using the LYP Correlation Functional: Becke, A. D. J. Chem. Phys. **1993**, 98, 5648.

⁽²⁰⁾ Gauss, J. J. Chem. Phys. Lett. 1992, 191, 614. Gauss, J. J. Chem. Phys. 1993, 99, 3629.